User’s Guide for the BNT Soft Discretization Package
(Version 1.0)

by Imme Ebert-Uphoff

Adjunct Associate Professor
School of Mechanical Engineering
Georgia Institute of Technology
ebert@me.gatech.edu or ebert@stups.com

November 10, 2009

1 The BNT Soft Discretization Package

Many real world systems contain both discrete and continunmges. Bayesian networks can currently only
model continuous nodes that follow a Gaussian distributidmus, if the continuous nodes of the system to
be modeled do not follow a Gaussian distribution, discrees must be used, raising the question of how
to best discretize the continuous training data.

The BNT Soft Discretization Package serves as interfacedeat discrete Bayesian networks and contin-
uous data. Soft discretization uses soft boundaries, zallee near a discretization interval can be modeled
as falling into more than one interval, where weights désctiie extend to which the value is associated with
the different intervals. All the algorithms are describedjreat detail in [1]. The BNT Soft Discretization
Package implements all of the algorithms from [1] for the 8alet Toolbox (BNT) for Matlab.

While [1] uses the example of precipitation down-scalingggample, we use a different example here
for demonstration purposes. Namely the incinerator systefimed by Lauritzen [2] is used here, because it
is a mixed discrete-continuous system and thus betterdsidtdemonstrate the use of the package for mixed
discrete-continuous systems.

1.1 Mixed Discrete-Continuous Systems

The algorithms apply to systems where all nodes are conigyas well as to systems that have both discrete
and continuous nodes (see [1]). In the later case, which We gaixed discrete-continuous system, the
training data has continuous values for some nodes, diseadies for others. However, for each single node
the training data has to be consistent - either all discretd! continuous.

1.2 Algorithms Included in this Package
This package contairasl algorithms from [1], namely
e Converting continuous node values to weights (soft evidgnsing soft discretization;

e Training the CPTs of a discrete network from mixed discieiatinuous training data using soft dis-
cretization;

*Joint Appointment with the Robotics and Intelligent Ma@snCenter, School of Interactive Computing, College of Cating,
Atlanta, GA 30308.

e Performing soft inference in the new network, and convgrtire inference results to a single continu-
ous (expected) value for each continuous node, if desired.

It is recommended that users first read [1] to familiarizertbelves with the algorithms and terminology.

2 Availability, Updates and Permission to Use

The source code, this documentation and Technical Repgaté¢lavailable at www.DataOnStage.com. This
may or may not be the newest version of the code. The newesbweand any bug fixes are always available
at www.DataOnStage.com.

Permission to use this package is granted according to tims iescribed in file license.txt in the source
code directory. Please acknowledge the use oBtHE Soft Discretization Package and cite [1] in the corre-
sponding publications.

Although not required, | would also appreciateréty much if you would send me an e-mail if you use
this package. Knowing that this work is useful to other peaplmy main reward for providing these files!
For any comments, questions or suggestions, please sead &mbert@stups.com

3 Organization of this Document

The remainder of this document is organized as follows.i@edt discusses the individual Matlab functions
of the Soft Discretization Package. Section 5 shows how &othis functions using a sample model and
discusses the results. Appendix A lists the sample codéieekample.

4 Available Matlab Functions

Section 4.1 provides an overview of all the Matlab functiomduded in the Soft Discretization Package,
while Section 4.2 focuses on the six User Interface Funstiarich provide access to the complete func-
tionality of the package.

4.1 Overview of All Functions

The files included in the Soft Discretization Package canitidet] into the following three groups.

1. User Interface Functions
The following six user interface functions provide the nfeee to all the functionalities of soft dis-
cretization (including inference).

soft _discretization_weights. m
soft _CPT _for_all _nodes. m
check_sum m

soft _inference. m

init_state nmeans. m

create discrete bnet. m

2. Auxiliary Functions
The following three auxiliary functions are used by the dies. You are not likely to call any of these
directly.

AUX i ncrenent _vector_state. m
AUX_|in_index. m
my_norm cdf. m

3. Sample Use Functions
These following two files document how to use of soft disazagion. You will not need them any more
once you wrote your own application.

sanpl e_script. m
nk_i nci nerator_bnet _nodified. m

4.2 User Interface Functions

The interface to all the functionalities of soft discretiea (including inference) is given by the six core
functions. Each one of these six functions is discussedtaldelow. Their use is demonstrated later in file
samplescript.m, which is discussed in much detail in Section 5.

4.2.1 softdiscretization_weights

Purpose: This function converts evidence into soft evidence in thenfof weights. See Sections 4.2.2 and
4.2.3 of [1] for the definition of the weights. This functi@grimarily used by functions “sofEPT_for_all_nodes”
and “softinference”, but can also be used on its own.

Format:

function p_weight = soft_discretization_weights(bnet_soft, case_m xed_vec,
node_l i st, bounds, discretization_type, deviation, deviation_is_factor)

% CALCULATE WEI GHTS USI NG SOFT DI SCRETI ZATI ON

% As defined in Sections 4.2.2 and 4.2.3 of research report GI- ME-2009-002.
% Return single cell array for all nodes, where only entries for nodes in
% node_list are filled!

%

% | NPUT:

% bnet_soft = discretized network, CPT values can still be random

% case_m xed_vec = data vector for single case with possibly mixed discrete
% and continuous val ues

% node_list = |list of nodes to be discretized, i.e. for which weights
% shoul d be cal cul at ed.

% Not e: W often include ALREADY discrete nodes in this list, to get

% wei ghts for all nodes of interest.

% Sanpl e use:

% node_list = evidence_nodes for inference,

% node_list = CPT_nodes for |earning CPT paraneters

%

% bounds = list of discretization boundaries for continuous nodes
% di scretization_type:

% "is_discrete’ % al ready discretized (do NOT discretize)

% " hard’ % use hard di scretization

% "soft’ % use soft discretization

% devi ation = val ue
% deviation_is factor: true/false

% true: sigma = deviation * x_hat (use deviation value as percentage factor)
% false: sigma = deviation (use devi ati on val ue as absol ute val ue)

%

% OUTPUT:

% p_weight = cell array of the form p_wei ght{node}(state)

% whi ch contains weights for each node included in list of node_Ilist

Comments: Use input parameter nodist to define for which nodes you want to calculate weightsladist
may contain nodes that are already discrete. If using fararfce, simply use list of all evidence nodes as
nodelist, regardless of whether they are continuous or discrete

4.2.2 softCPT_for_all_nodes

Purpose: Train the CPTs for a discrete network from mixed discretstiomous data using soft discretization
according to Section 4 of [1].

Format:

function bnet = soft_CPT for_all_nodes(bnet, training_cases, bounds,
di scretization_type, deviation, deviation_is_factor, show CPT, show JPT)

% Learn all CPTs of the network using SOFT or HARD DI SCRETI ZATI ON as desired
%

% | NPUT

% bnet = BN for which to cal cul ate CPTs

% --> CPTs of that bnet will be OVERARITTEN in this routine

% training_cases = cell containing training cases

% (each case can contain discrete and continuous val ues)
% discretization_type = contains type for each node

% "is_discrete’ % al ready discretized (do NOT discretize)

% "hard’ % use hard discretization

% "soft’ % use soft discretization

% deviation = array with one value for each node
% deviation_is_factor: array with one true/false value for each node

% true: sigma = deviation *» x_hat (use deviation value as percentage factor)
% false: sigma = deviation (use devi ation val ue as absol ute val ue)

% show _CPT = whether or not to display the CONDI TI ONAL probabilities cal cul ated

% show JPT = whether or not to display the JONT probabilities cal cul ated

%

% OUTPUT

% bnet = original bnet, but now with CPTs assigned, and META data

% appended (bounds, deviation, etc.)

Comments: The CPTs of bnet are overwritten by this function.

4.2.3 checksum

Purpose: This function calculates the cheskim entries for all CPT tables as defined in Section 7.4 of [1].
If all check sum entries are one, that indicates that all CPTs are welielbfichecksum entries with values
smaller than one indicate ill-defined CPTs. (Values largantone can never occur.) See Section 7.4 of [1]
for details.

Format:

function [one_entries, not_one_entries] = check_sum(bnet, epsilon,
short _print_out)

% Cal cul ate check_sumfunction for all CPT tables of bnet according to
% See Section 7.4 of research report GI-Me-2009-002 for definition of

% check_sum

% In a nutshell, the check_sumentry is defined, for any parent state

% conbi nation, as the sumof the CPTs over all child states

% given that particular parent state conbi nation:

% check_sum (parent state conbi) = sumj P(y_j | parent state conbi).
%

% I nterpretation:

% I1f all check_sumentries are one, that indicates that all CPT entries
% are wel | defined.

% | f many are NOT one, that indicates that many CPT entries are not well
% defined (BNT sets undefined CPT entries to default val ue 0).

%

% | NPUT:

% bnet : BN to be checked

% epsi | on: threshol d val ue (0.0001 seens to be a good value) to

% di stinguish between 1 and 'not 1'.

% short_print_out: if true: only print nunber of entries that are/are not 1.
% if false: also print all check_sumentries.

%

% OUTPUT:

% one_entries: Nunber of check_sumentries that are one

% not _one_entries: Nunber of check_sumentries that are not one

4.2.4 softinference

Purpose: This function converts a data vector into soft evidence atdrns an engine initialized with the
soft evidence, as described in Section 6.1 of [1]. The inptadec consists of the continuous/discrete values
of all evidence nodes. Soft inference typically has two tsodmponents: (1) The evidence is converted to
soft evidence before it is entered into the network and (8)ARTs of the network used for inference were
usually obtained through soft discretization.

Format:

function engine = soft_inference(bnet_soft, data_vec, evidence_nodes,
bounds, discretization_type, deviation, deviation_is_factor)

% Initialize inference engi ne using SOFT EVI DENCE - -

% as explained in Section 6.1 of research report GT-ME-2009-002.

%

% This routine first takes the evidence contained in data_vec and converts

%it into soft evidence (i.e. weights). Only the values correspondi ng to nodes of
% evi dence_nodes have to be filled in vector data_vec, since only those are used.
%

% The wei ghts are entered into a new i nference engi ne as soft evidence.

% The initialized engine is then returned as output.

%

% | NPUT:

% bnet _soft: bnet created by soft evidence

% dat a_vec: data vector that contains evidence val ues for all
% evi dence_nodes

% evi dence_nodes: |ist of nodees for which evidence is to be entered
% bounds, discretization_type:

% sane as in function soft_discretization_weights
% devi ation, deviation_is_factor:

% same as in function soft_discretization_weights
%

% OUTPUT:

% engi ne: new engine initialized with the soft evidence

4.2.5 initstatemeans

Purpose: This function calculates the mean for each state of each basked on provided training data, as
described in Section 6.2 of [1]. Our recommendation is totheesame training data here as is used for the
training of the network (i.e. when calling function s@@PT_for_all_nodes).

This function isnot required to use soft inference. It is only required if we wantonvert the output of
the inference into a single continuous value for each notle.flinction needs to be called only once for the
training data, then stat@ean is available for all future calculations.

Format:

function state_nean = init_state_neans(m xed_sanpl es, cnodes, bounds)

% Initialize state nmeans for all continuous nodes

% followi ng Section 6.2 of research report GT-Me-2009-002.

% Using the training cases, find the nean value for each state of each node.
% This mean value is used later on for inference to cal culate an

% expected value, i.e. a continuous output val ue.

%

% | NPUT:

% m xed_sanpl es: cell array of sanple cases that may contain both continuous
% and di screte val ues

% cnodes: list of all continuous nodes in the original network

% bounds: cell array of discretization boundaries for the continuous
% nodes

%

% OUTPUT:

% st at e_nean: cell array containing the nean val ues for each state of

% each node

% st at e_mean{ node}(state) then provides the mean value for a specific node and
% state.

4.2.6 creatediscrete.bnet

Purpose: Take a network containing one or more continuous nodes agatecia new network from it that has only
discrete nodes. This function was not discussed in [1] arglomdy created because our example starts out with a mixed
discrete-continuousetwork from which mixed discrete-continuougaining data is created. This function provides a
convenient way to define the discretized network directiyrfthe mixed discrete-continuous network.

In most application one starts out with mixed discrete-twmusdata, rather than a network, and in those cases
function creatediscretebnet cannot be used. Instead one would define the graph ofsbeet@ network by hand and
then use vector boundaries to define the number of statesiébrmode. Thus you are unlikely to use this file in most
applications, but it is a good sample for creating your owsta@onized function.

Format:

function bnet _discrete = create_di screte_bnet(bnet_m xed, boundaries)

% CREATE DI SCRETI ZED NETWORK (W TH RANDOM CPT) FROM M XED NETWORK
%

% | NPUT

% bnet _mi xed: original BN with at |east one conti nuous nodes,

% but may al so include discrete nodes

% boundari es: array containing discretization boundaries for all

% cont i nouous nodes

%

% OUTPUT

% bnet _di screte: correspondi ng bnet with only discrete nodes, CPTs are random

Comments: The boundaries are needed as input only to determine theeprmule sizes for the discrete
network.

Filter State (F/1 Waste Type (W/2

Filter Efficiency (E/3)

y
@ssion (D/6 CO2 Concentration in Emission (C/5) Metals in Waste (Min/7

4

Light Penetrability (L/9 Metals Emission (Mout/8

Figure 1: Original incinerator model with both discretectemgular) and continuous (oval) nodes

Burning Regimen (B/4;

Filter State (F/1 Waste Type (W/2

\

Filter Efficiency (E/3) Burning Regimen (B/4

/

Dust Emission (D/6 CO2 Concentration in Emission (C/5) | Metals in Waste (Min/7
I~ /

Light Penetrability (L/9) Metals Emission (Mout/8

Figure 2: Discretized version of incinerator network

5 Sample Use

5.1 Incinerator Model
To demonstrate the use of the soft discretization files,ddbak at the following example. The file
nmk_i nci nerator_bnet nodified. m

initializes the Bayes Net for the incinerator network defify Lauritzen [2]. This example demonstrates

the use of the BNT Soft Discretization Package better tharettample used in [1], because it is a mixed

discrete-continuous system. Our version of the incinemaodel contains two small modifications: it uses

longer node names and all nodes are defined to be observasgThanges were made primarily to generate
Figures 1 and 2 with the long node names.)

The graph of this model is shown in Figure 1, where rectanquddes represent discrete nodes and oval
nodes represent continuous nodes. The The letters lisigal@ntheses next to the node names denote short
names for each node, also used in the original publicat®Rlnahd the number in parentheses are the node
numbers used in the BNT code.

This network is fictitious and was introduced by Lauritzerdeanonstrate the use of continuous nodes
with Gaussian distributions in Bayesian networks. Themiscientific reason to discretize this continuous
model, since a Gaussian distribution seems to be a goodsesgiegion of the system. However, discretizing
this network is an excellent teaching tool to show how to usesoft discretization files, because the model
provides a simple means to generate mixed sample vectdrsaghee used to train and test a discretized
model. Figure 2 shows the corresponding model with onlyrdiecnodes.

Note that in most applications one would not start out withigeeh Bayesian Network, but instead with
data obtained from an application.

5.2

Using the Sample Script

The file samplescript can be executed simply by typing samgteipt in the Matlab command window. Al-
ternatively, one can open the file sampghzipt.m in a text editor and copy groups of lines directhpithe
Matlab command window, from beginning to end of the file. Tample code has the following main com-
ponents:

PART |: CREATE TRAINING DATA, THEN INITIALIZE, TRAIN AND EVA LUATE TWO DISCRETIZED
NETWORKS (one with soft discretization, one with hard d&tzation)

1.

Create Training Data
Initialize mixed incinerator network, create 1000 samples

. Define Parameters for Soft Discretization

Define the following discretization parameters for eachejod

(a) discretization type (soft/hard/tiscrete),
(b) deviation (value) and deviatias_factor (true/false) - for nodes with continuous trainingada
(c) discretization boundaries - for nodes with continuagasing data.

. Create Discrete Network (with random CPTSs): bnetsoft

This step is done here based on the mixed incinerator modedpplications where training data is
given directly (no mixed BN model), one would instead defmegraph structure directly by hand, but
one could still use the cell array 'boundaries’ to define thmbers of node states.

. Train bnet_soft Using Soft Discretization

Use function softCPT_for_all_nodes to calculate all CPTs for discrete model accordingtitién 4.3
of [1]. Display the resulting joint probabilities (Equati¢16) of [1]) and conditional probabilities (last
equation on p. 14 of [1]) for each node.

. Create and train another discrete network (bnethard) using Hard Discretization

This second network is created so that we can compare résu#tsft and hard discretization.

. Apply CHECK _SUM test

Apply the checksum test of Section 7.4 of [1] to all CPT entries of hhard and bnesoft. There is
one checksum entry for each parent combination and it is

CHECK_SUM(parent state compi= Z P(y,|parent state compi
J

i.e. for a given parent state combination it is the sum of theditional probabilities over all child
states. If all checlsum entries are one, then all CPTs are well defined. Howenries that are not
one indicate undefined CPTs. Those usually indicate thaeeifspparent state combination did not
occur in the training data, and thus all corresponding CPgigwset to 0 by BNT.

. Compare CPTs of bnethard and bnet_soft for Node 6

Node 6 is the node with the largest number of parents in thigar& (3 parents), thus it is most likely
to have undefined CPT entries.

PART II: USE bnetsoft TO CALCULATE WEIGHTS AND DEMONSTRATE INFERENCE

1.

2.

Calculate Soft Discretization Weights for a Sample
Create a new sample vector from original network and show twwalculate all weights for this
sample.

Demonstrate Inference
For the same sample, enter evidence for all nodes excet &7soft evidence. Now we can infer
probabilities for nodes 6,7,8. (See also Section 6.1 of [1].

3. Demonstrate Creating Continuous Output Estimates
Run init. statemeans to get means of all states for all nodes based on gaiaita, see Section 6.2 of
[1]. Use the state means to generate continuous estimatalters of nodes 6, 7 and 8.

The sample code is fairly self-explanatory and is includedppendix A for ease of reference.

5.3 Sample Results

Running the script samplecript.m yields slightly different results every time, bese the training data and
test data are generated by sampling the mixed incinerataonie which results in different data sets every
time. Below is the sample output for a run.

>> sanpl e_scri pt

----------- CREATI NG | NCl NERATOR NETWORK - - -------
Creating 1000 sanples fromoriginal network

---------- CREATE DI SCRETE BN (with random CPTs): bn_soft
Creating BNet with only discrete nodes

Done

Initialize CPTs with random val ues

Done

------ TRAI N bnet _soft USING SOFT DI SCRETI ZATION -------
Calc CPT for child node 1 (0 parents -- 2 CPT entries)

Calc CPT for child node 2 (0 parents -- 2 CPT entries)
Calc CPT for child node 3 (2 parents -- 12 CPT entries)
Calc CPT for child node 4 (0 parents -- 2 CPT entries)
Calc CPT for child node 5 (1 parents -- 8 CPT entries)
Calc CPT for child node 6 (3 parents -- 48 CPT entries)
Calc CPT for child node 7 (1 parents -- 4 CPT entries)
Calc CPT for child node 8 (2 parents -- 32 CPT entries)
Calc CPT for child node 9 (1 parents -- 16 CPT entries)
---------- CREATE DI SCRETE BN (with random CPTs): bn_hard
Creating BNet with only discrete nodes

Done

Initialize CPTs with random val ues

Done

------ TRAI N bnet _hard USI NG HARD DI SCRETI ZATION -------
Calc CPT for child node 1 (0 parents -- 2 CPT entries)

Calc CPT for child node 2 (0 parents -- 2 CPT entries)
Calc CPT for child node 3 (2 parents -- 12 CPT entries)
Calc CPT for child node 4 (0 parents -- 2 CPT entries)

Calc CPT for child node 5 (1 parents -- 8 CPT entries)

Calc CPT for child node 6 (3 parents -- 48 CPT entries)

Calc CPT for child node 7 (1 parents -- 4 CPT entries)

Calc CPT for child node 8 (2 parents -- 32 CPT entries)

Calc CPT for child node 9 (1 parents -- 16 CPT entries)

----- Hi ghlighting D fferences between hard and soft CPTs -----
Hit ENTER to continue

CHECK SUM entri es:

We WANT all entries to be one. That neans all CPTs are well defined.
Check Sumentries for CPTs of bnet _har d:

entries that ARE 1: 30 (85.714286 percent)

entries that are NOT 1: 5 (14.285714 percent)

Check Sumentries for CPTs of bnet _soft:

entries that ARE 1. 35 (100. 000000 percent)

entries that are NOT 1: O (0. 000000 percent)

Show CPT for Node 6 = node with the nbost parents in the network.
Hit ENTER to continue

I ndex set CPT_hard CPT_soft
(1,1,1,1) 1. 000000 1. 000000
(1,1,1,2) 0. 000000 0. 000000
(1,1,1,3) 0. 000000 0. 000000
(1,1,1,4) 0. 000000 0. 000000
(1,1,2,1) 0. 153846 0.162710
(1,1,2,2) 0. 846154 0. 837290
(1,1,2,3) 0. 000000 0. 000000
(1,1,2,4) 0. 000000 0. 000000
(1,2,1,1) 0. 000000 1. 000000
(1,2,1,2) 0. 000000 0. 000000
(1,2,1,3) 0. 000000 0. 000000
(1,2,1,4) 0. 000000 0. 000000
(1,2,2,1) 0. 000000 0.113121
(1,2,2,2) 0. 000000 0. 886879
(1,2,2,3) 0. 000000 0. 000000
(1,2,2,4) 0. 000000 0. 000000
(1,3,1,1) 0. 000000 0. 000000
(1,3,1,2) 0. 000000 0. 000000
(1,3,1,3) 1. 000000 1. 000000
(1,3,1,4) 0. 000000 0. 000000
(1,3,2,1) 0. 000000 0. 000000
(1,3,2,2) 0. 000000 0. 000000
(1,3,2,3) 0. 500000 0. 478950
(1,3,2,4) 0. 500000 0. 521050
(2,1,1,1) 0. 000000 0. 978099

10

(2,1,1,2) 0. 000000 0.021901
(2,1,1,3) 0. 000000 0. 000000
(2,1,1,4) 0. 000000 0. 000000
(2,1,2,1) 0. 000000 0. 013650
(2,1,2,2) 0. 000000 0. 986350
(2,1,2,3) 0. 000000 0. 000000
(2,1,2,4) 0. 000000 0. 000000
(2,2,1,1) 0. 979557 0.975611
(2,2,1,2) 0.020443 0. 024389
(2,2,1,3) 0. 000000 0. 000000
(2,2,1,4) 0. 000000 0. 000000
(2,2,2,1) 0. 009709 0. 013447
(2,2,2,2) 0.990291 0. 986553
(2,2,2,3) 0. 000000 0. 000000
(2,2,2,4) 0. 000000 0. 000000
(2,3,1,1) 0. 000000 0. 000000
(2,3,1,2) 0. 000000 0. 000000
(2,3,1,3) 1. 000000 1. 000000
(2,3,1,4) 0. 000000 0. 000000
(2,3,2,1) 0. 000000 0. 000000
(2,3,2,2) 0. 000000 0. 000000
(2,3,2,3) 1. 000000 1. 000000
(2,3,2,4) 0. 000000 0. 000000

Observati ons
* Typically one can find several entries that are 0 for CPT_hard, but close to 1 for CPT_soft.
* Each vertical group of 4 entries above defines a check_sumentry and should be 1

As we already know, that is often not the case, especially for bnet_hard

------ PART Il - USING TRAI NED NETWORK (bnet_soft) FOR | NFERENCE ---- - -

---------- DEMONSTRATI NG HOW TO CALCULATE WEI GHTS -----------
H't ENTER to continue

Cenerate new sanple fromoriginal network (m xed di screte-continuous)
1. 000000 2.000000 -3.193085 1.000000 -1.942921 2.734501 -0.568029 2.133517 1.481560

Convert sanple case to Wights
Node 1:
Boundari es: None (node al ready discrete)
Sampl e Val ue: 1. 000000
Correspondi ng Wi ghts: 1.000 0.000
Node 2:
Boundari es: None (node al ready discrete)
Sanpl e Val ue: 2.000000
Correspondi ng Wi ghts: 0.000 1.000
Node 3:
Boundaries: -Inf -3.550000 -1.850000 I nf
Sampl e Val ue: -3.193085
Correspondi ng Weights: 0.000 1.000 0.000
Node 4:
Boundari es: None (node al ready discrete)
Sampl e Val ue: 1. 000000
Correspondi ng Wi ghts: 1.000 0.000

11

Node 5:

Boundaries: -Inf -2.500000 -1.500000 -0.500000 Inf

Sanpl e Val ue: -1.942921

Correspondi ng Weights: 0.000 1.000 0.000 0.000
Node 6:

Boundaries: -Inf 3.200000 4.700000 7.000000 I nf

Sampl e Val ue: 2.734501

Correspondi ng Wi ghts: 1.000 0.000 0.000 0.000
Node 7:

Boundaries: -Inf 0.000000 Inf

Sanpl e Val ue: -0.568029

Correspondi ng Wi ghts: 1.000 0.000
Node 8:

Boundaries: -Inf 2.800000 3.700000 4.700000 Inf

Sanpl e Val ue: 2.133517

Correspondi ng Weights: 1.000 0.000 0.000 0.000
Node 9:

Boundaries: -Inf -0.200000 0.500000 1.800000 I nf

Sampl e Val ue: 1.481560

Correspondi ng Wi ghts: 0.000 0.000 1.000 0.000

For this network and snmall deviation the weights often result as exactly 0 or 1
However, if you run this a few tines, you will see other cases, too

----------- DEMONSTRATI NG | NFERENCE - ----------
Usi ng the sanpl e vector from above, estinmate the val ues of nodes 6,7,8
based on the values of all other nodes.

H't ENTER to continue

Cal cul ate State Means ...
Done

I nference Results for Nodes 6,7 and 8

Node: 6
Probabilities: 0. 969558 0.030442 0. 000000 0. 000000
St at e neans: 2.737457 3.703481 5.747650 7.368571

Esti mat e val ue: 2.766865
Act ual val ue: 2.734501

Node: 7

Probabilities: 1. 000000 0. 000000

St at e neans: -0.502786 0.499002

Esti mat e val ue: -0.502786

Act ual val ue: -0. 568029

Node: 8

Probabilities: 0.970883 0.027450 0.001667 0. 000000
St at e neans: 2.302559 3.156884 4.184094 5.523484

Esti mat e val ue: 2.329146
Act ual val ue: 2.133517
>>

5.4 Discussion of Results

As mentioned above running the script samgteipt.m yields slightly different results every time, bese
the training data and test data are generated by samplingi#eel incinerator network. However, the trends

12

always remain the same. Specific observations for the segeiterated by the script:

6

e PART | — Check_sum entries
In most cases for the network obtained usiagd discretization 30 (out of 35) checlsum entries are
one, and the remaining 5 are not one, indicating severalfumeeCPTs. The main reason for this
is Node 6, which is the node with the largest number of pareritse network, namely three parents.
Node 6 has 64 CPT entries and given the small sample sized(1i08 not surprising that not all parent
state combinations occur in the training data. Interebtjiryen if we use 100,000 samples (instead of
1,000) typically 4 of the 35 checkum entries are still undefined, i.e. even for large sampéersit all
parent combinations are likely to occur. Thus, even fordeggmple size, hard discretization seems to
result in many undefined CPTs for this example, making theofiseft discretization a necessity.

In contrast, the 35 checkum entries fosoft discretization - even for a deviation of onl§% and only
1000 samples - aresually all one. However, this is not always the case - occasionaly @ more
entries are not one for a deviation®f. Therefore it is important to always apply the chestkm test
after training a network, and, if necessary, training th@mwek again with an increased deviation value,
until all CPT entries are well defined.

One risk of using a Bayesian Network with undefined CPTs féerance is that it tends to provide

erroneous results for rare parent state combinations. ¥éonple if a certain parent state combination
does not occur very often, chances are that it does not attheitraining data. Using hard discretiza-
tion the CPTs for that parent state combination are all se¢to. If this rare parent state combination
happens to ever occur later as evidence and inference @rped, the network will return as default

the lowest state of the child node as thenly possible state for this parent state combination, without
providing any warning that this estimate is based on undefCRT values.

e PART | — CPT comparison for Node 6
Node 6 has three parents and is the node with the largest muhparents in the network. This node
is generally the most likely to have undefined CPTs using k#cretization and is the main culprit
for checksum entries that are not one for hard discretization.

The output lists all 64 CPT values of Node 6 for both hard arfddiscretization. Looking at the actual
CPT values we note the following:

— Typically we can find several entries that are O for Gfalrd, but close to 1 for CR3oft.

— Each vertical group of 4 entries in the results defines a clsaok entry and should be 1.; As we
already know, that is often not the case, especially for Iaedl.

e PART Il — Calculating Weights
For the given parameters the weights often result as ex@aityl. The reason is that the boundaries
for this network are spaced fairly wide and the deviatiorugak chosen smalbfo of continuous
value). Therefore a sample value must lie fairly close to ohthe interval boundaries in order for
the corresponding weights to differ from 0 or 1. However,oluyexecute this several times, you will
usually see values other than 0 or 1, too.

e PART Il — Inference Results for Nodes 6, 7 and 8
The results first show the probabilities, which are obtaitredughsoft inference. The soft inference
contains two “soft” components: (1) The CPTs of the netwoekenobtained by soft discretization and
(2) the evidence was converted to soft evidence before itawgered into the network.

The egtimate value is obtained by multiplying the probabilities by the stateame and adding the
result, which yields an expected value. The estimate vdlug provides a continuous output. In our
simulations this continuous value always was fairly clasthe actual value.

Contact

For any questions or suggestions, please send e-mail tt@bieips.com.

13

References

[1] I. Ebert-Uphoff. A probability-based approach to soisatetization for bayesian networks. Technical
report, School of Mechanical Engineering, Georgia Insitof Technology, Atlanta, GA (USA), Sept
2009. Report Number GT-ME-2009-002.

[2] Steffen L. Lauritzen. Propogation of probabilities, ams and variances in mixed graphical association
models.Journal of the American Statistical Association, 87(420):1098—-1108, Dec 1992.

14

A samplescript.m

The sample code is fairly self-explanatory and is includeldw just for ease of reference.

% sanpl e_script. m

%

% Copyright (c) 2009, Inme Ebert-Uphoff (ebert@tups.con.

% This file is part of the "BNT Soft Discretization Package".

% Avai |l abl e at Dat aOnSt age. com

% Perm ssion to use: see license.txt in this directory.

%

% Sanpl e Script to explain the use of the BNT Soft Discretization Package.
% Copy groups of lines into the command wi ndow of Matlab or run the whole
% script at once.

9BBBB88888 1) Create Training Data %B8888808RRBRBA8MN

% Create BN with both discrete and conti nuous nodes
fprintf(’\n----------- CREATI NG | NCI NERATOR NETWORK - -------- \n');

% THI S MODEL | S FROM THE BNT DI STRI BUTI ON,

% see BNT/ exanpl es/ static/ Model s/ nk_i nci nerator_bnet. m

% But with 2 changes: all nodes are defined to be observed and

% | ong node names are used. Everything else is the sane!

bnet _m xed = nk_inci nerator_bnet_nodified();

%gr aph_pl ai n_t o_dot (bnet _m xed, 'incinerator_original.dot’,

% 'use_node_nanes’, true, 'shapel’, ’'box’, 'shape2’, 'ellipse’);

% Create 1000 sanples from original incinerator network
N = I engt h(bnet _ni xed. dag) ;
nsanpl es = 1000;
fprintf(’ Creating % sanples fromoriginal network\n', nsanples);
sanpl es = cell (N, nsanpl es);
for i=1:nsanples
sanpl es(:,i) = sanpl e_bnet (bnet _mni xed);
end

%B000088886 2) DEFI NE PARAMETERS FOR SOFT DI SCRETI ZATI ON 988880800880

% Choose di scretization type and discretization intervals for each node
% dnodes are already discrete
for (node=bnet _m xed. dnodes) % for all discrete nodes

di scretization_type{node} = 'is_discrete’;

boundari es{node}=[]; % enpty set, because node is already discrete
end

% Define discretization type for continuous nodes
% for continuous nodes we can choose from'soft’ or "hard discretization
for (node=bnet _m xed. cnodes) % for all continuous nodes
di screti zation_type{node} "soft’;
devi ati on(node) = 0.05; % devi ation is 5% of continuous val ue
deviation_is_factor(node) = true;
% Effective deviation is: deviation(i) * continuous_val ue
end

15

% Choose di scretization boundaries for continouous nodes

% Met hod used here: Generate a histogramfor each node,

% t hen choose boundari es by hand.

% Exanpl e:

% node = 6 % for a single node

%886 generate vector of all sanple values for current node

% si ngl e_node_data = cel |l 2num(sanpl es(node,:));

% hi st (si ngl e_node_dat a, 100) % generate hi stogram

%0 Then sel ect boundari es by hand (visual inspection) from histogramfigure.

F=1, W=2, E=3;, B=4, C=5;, D=6; Mn=17; Mut =8; L =09;
boundari es{E} = [-Inf, -3.55, -1.85, Inf]; % Node 3
boundari es{C = [-Inf, -2.5, -1.5, -0.5, Inf]; % Node 5
boundari es{D} = [-Inf, 3.2, 4.7, 7, Inf]; % Node 6
boundaries{Mn} = [-Inf, O, Inf]; % Node 7
boundari es{Mut} = [-Inf, 2.8, 3.7, 4.7, Inf]; % Node 8
boundari es{L} = [-Inf, -0.2, 0.5, 1.8, Inf]; % Node 9

98888888 3) CREATE CORRESPONDI NG NETWORK W TH ONLY DI SCRETE NODES %888886

fprintf(’\n---------- CREATE DI SCRETE BN (wi th random CPTs): bn_soft\n’);
bnet _soft = create_di screte_bnet(bnet _nm xed, boundaries);

%gr aph_pl ai n_t o_dot (bnet _soft, 'incinerator_discrete.dot’,

% "use_node_nanes’, true, 'shapel’, 'box’, 'shape2’, 'ellipse’);

98888888 4) TRAIN DI SCRETE NETWORK USI NG SOFT DI SCRETI ZATI ON %888888888880

fprintf(’\n------ TRAI'N bnet _soft USING SOFT DI SCRETI ZATION ------- \n');
show CPT = false; % Should | print Conditional Probability Tables for all nodes?
show JPT = false; % Should | print Joint Probability Tables for all nodes?
[bnet _soft] = soft_CPT for_all_nodes(bnet_soft, sanples, boundaries,
di scretization_type, deviation, deviation_is_factor, show CPT, show JPT);

98888888/ 5) CREATE AND TRAI N ANOTHER DI SCRETE NETWORK USI NG HARD DI SCRETI ZATI ON %886
% For conparison - train another discrete network using HARD di scretization

fprintf(’\n---------- CREATE DI SCRETE BN (wi th random CPTs): bn_hard\n’');
bnet _hard = create_di screte_bnet (bnet _mi xed, boundaries);

fprintf(’\n------ TRAI'N bnet _hard USI NG HARD DI SCRETI ZATION ------- \n');
for (node=bnet_mi xed. dnodes) % for all discrete nodes
hard_di screti zation_type{node} = 'is_discrete’;
end
for (node=bnet_mi xed. cnodes) % for all continuous nodes
hard_di screti zation_type{node} = 'hard’; % request hard discretization
end

[bnet _hard] = soft_CPT_for_all _nodes(bnet_hard, sanples, boundaries,
hard_di scretization_type, deviation, deviation_is factor, show CPT, show JPT);

% FOR TESTI NG COWPARE TO OLD CODE:
% CPT_for_all _nodes_ol d(bnet _hard, discretization_type, sanples, boundaries,
% devi ation, deviation_is _factor);

9%88080808886 6) APPLY CHECK _SUM TEST TO BOTH DI SCRETE NETWORKS %388886888880088888/6

fprintf('----- Hi ghlighting D fferences between hard and soft CPTs ----- \n');
dumy = input(’'Ht ENTER to continue\n’);

%86 Check how many CPTs are well defined.

16

fprintf(’\nCHECK SUM entries:\n’);
fprintf(’ W WANT all entries to be one. That neans all CPTs are well defined.\n);
want _short _print_out = true; %use 'false’ to see the actual entries

fprintf(’\nCheck Sumentries for CPTs of bnet _hard:\n’);
[ones, not_ones] = check_sun(bnet_hard, 0.00001, want_short_print_out);

fprintf(’\nCheck Sumentries for CPTs of bnet _soft:\n");
[ones, not_ones] = check_sun(bnet_soft, 0.00001, want_short_print_out);

%eRR8e8880 7) H GHLI GHT CPT DI FFERENCES BETWEEN DI SCRETE NETWORKS %88488808880

node = 6;

fprintf(’\nShow CPT for Node % = node with the nost parents in the network.\n’, node);
dunmmmy = input(’'Ht ENTER to continue\n’);

s_hard = struct (bnet_hard. CPD{node}); %violate privacy to get CPDs
s_soft = struct(bnet_soft. CPD{node});
t = size(s_hard. CPT);
fprintf(’Index set CPT_hard CPT_soft\n’);
for il1=1: t(1) %child with 3 parents has 4-di mensional CPT table
for i2=1: t(2)
for i3 =1: t(3)
for i4 =1: t(4)
fprintf("(%,%,%, %) % %\n', i1,i2,i3,i4,
s _hard. CPT(i1,i2,i3,i4), s_soft.CPT(il1,i2,i3,i4));
end
fprintf(’\n");
end
end

end
fprintf(’ Cbservations:\n’);
fprintf('+ Typically one can find several entries that are 0 for CPT_hard,’);
fprintf(’ but close to 1 for CPT_soft.\n’);
fprintf(’+ Each vertical group of 4 entries above defines a check_sumentry and should be 1.\n");
fprintf(’ As we already know, that is often not the case, especially for bnet_hard.\n\n');

fprintf('------ PART |1 - USING TRAI NED NETWORK (bnet _soft) FOR | NFERENCE - ----- \n');
%B808R8888 1) Cal culate Soft Discretization Wights for a Sanpl e %8880866

fprintf(’\n---------- DEMONSTRATI NG HOW TO CALCULATE WEI GHTS ----------- \n');
dumy = input(’'Ht ENTER to continue\n’);

% Create New Sanple fromoriginal network (mxed discrete + continuous)
case_m xed_vec = cell 2num(sanpl e_bnet (bnet _m xed));
fprintf(’ Generate new sanple fromoriginal network (nmxed discrete-continuous):\n');
for i=1:1ength(case_m xed_vec)
fprintf(’% ', case_m xed vec(i));
end
fprintf('\n);

% |l lustrate weight calcul ation
fprintf(’'\nConvert sanple case to Wights\n');

17

N _nodes = | engt h(bnet _m xed. dag);
node_list = [1:N nodes]; %calculate weights for ALL nodes
p_wei ght = soft _discretization_wei ghts(bnet_soft, case_m xed_vec, node_list,
boundari es, discretization_type, deviation, deviation_is factor);
for node = 1: N _nodes
fprintf(’ Node % : \n Boundaries: ', node);
if (length(boundaries{node})==0)
fprintf(’ None (node already discrete)’);
el se
for i=1:1ength(boundari es{node})
fprintf(' %', boundaries{node}(i));
end
end
fprintf('\n Sanpl e Value: % ', case_m xed_vec(node));

fprintf(’\n Correspondi ng Wi ghts: ');
for i=1:1ength(p_wei ght{node})
fprintf(’ 9. 3f ', p_weight{node}(i));

end

fprintf('\n);
end
fprintf(’\nFor this network and snall deviation the weights often result as exactly 0 or 1.\n’);
fprintf(’ However, if you run this a fewtinmes, you will see other cases, too.\n\n');

%808880880860 2) Denonstate Inference %80808680

fprintf(----------- DEMONSTRATI NG | NFERENCE - ---------- \n');

fprintf(’ Using the sanple vector from above, estimate the values of nodes 6,7,8\n");
fprintf(’based on the values of all other nodes.\n\n');

dunmmy = input(’'Ht ENTER to continue\n’);

%886 SET UP | NFERENCE ENG NE W TH EVI DENCE

N_nodes = | engt h(bnet _soft. dag);

all _nodes = [1: N _nodes];

test_nodes = [6,7,8];

evidence_nodes = [1,2,3,4,5,9]; %Al but 6,7,8

% ENTER EVI DENCE FOR evi dence_nodes

engi ne = soft_inference(bnet_soft, case_m xed_vec, evidence_nodes,
boundaries, discretization_type, deviation, deviation_is_factor);

% engine is now ready for inference

%806880880860 3) Denpnstate Creating Continuous Qutput Estimates %808866

% for each originally continuous node, calculate the nmean val ue of each state
%fromthe training data - this needs to be done only once for the training data
state_mean = init_state_neans(sanples, bnet_nmi xed.cnodes, boundaries);

% EXTRACT | NFERENCE RESULTS
fprintf(’\nlnference Results for Nodes 6,7 and 8:\n’);
for node = test_nodes

expected_value = [];

mar g = margi nal _nodes(engi ne, node); % Marginal probabilities for node

fprintf(’\nNode: %\n’, node);

p=mrg.T; %

fprintf(’ Probabilities: "),

for i=1:1ength(p)

fprintf("% ', p(i));
end
fprintf('\n);

18

% Cal cul ate expected val ue

fprintf(’State means: ")

vec = state_nean{node};

for i=1:1ength(vec)
fprintf('9% ', vec(i));

end

fprintf('\n);

expect ed_val ue(node) = p * state_nean{node}’'; %

fprintf(’Estimate val ue: %\n', expected_val ue(node));

fprintf(’Actual val ue: %\n', case_m xed_vec(node));
end

19

